W*-superrigidity for discrete quantum groups

Quantum Group Seminar

Milan Donvil ENS PSL November 17, 2025

Group von Neumann algebras

Let G be a countable group. The **left regular representation** is

$$\lambda: G \to \mathcal{U}(\ell^2(G)): \lambda_g \delta_h = \delta_{gh}.$$

The **group von Neumann algebra** is

$$L(G) := \{ \lambda_g \mid g \in G \}'' = \{ u_g \mid g \in G \}'' = \overline{\text{span}\{ u_g \mid g \in G \}}^{\text{SOT}}.$$

Group von Neumann algebras

Let G be a countable group. The **left regular representation** is

$$\lambda: G \to \mathcal{U}(\ell^2(G)): \lambda_g \delta_h = \delta_{gh}.$$

The **group von Neumann algebra** is

$$L(G) := \{\lambda_g \mid g \in G\}'' = \{u_g \mid g \in G\}'' = \overline{\operatorname{span}\{u_g \mid g \in G\}}^{SOT}.$$

Central Question

How much of G is remembered by L(G)?

Some properties of G are remembered by L(G):

- Amenability,
- Property (T),
- ightharpoonup L(G) is a factor iff G is icc.

Some properties of G are remembered by L(G):

- Amenability,
- Property (T),
- ightharpoonup L(G) is a factor iff G is icc.

On the other hand, much information is lost:

▶ For any infinite abelian group G, one has $L(G) \cong L^{\infty}([0,1], \lambda)$.

Some properties of G are remembered by L(G):

- Amenability,
- ► Property (T),
- ightharpoonup L(G) is a factor iff G is icc.

On the other hand, much information is lost:

- ▶ For any infinite abelian group G, one has $L(G) \cong L^{\infty}([0,1], \lambda)$.
- ▶ Connes '76: all icc amenable groups have isomorphic von Neumann algebras. E.g. $L(S_{\infty}) \cong L(S_{\infty} \times S_{\infty})$.

Some properties of G are remembered by L(G):

- Amenability,
- ► Property (T),
- ightharpoonup L(G) is a factor iff G is icc.

On the other hand, much information is lost:

- ▶ For any infinite abelian group G, one has $L(G) \cong L^{\infty}([0,1], \lambda)$.
- ▶ Connes '76: all icc amenable groups have isomorphic von Neumann algebras. E.g. $L(S_{\infty}) \cong L(S_{\infty} \times S_{\infty})$.
- $ightharpoonup L(G_1 * G_2) \cong L(H_1 * H_2)$ for all infinite abelian groups G_1, G_2, H_1, H_2 .

Some properties of G are remembered by L(G):

- ► Amenability,
- ► Property (T),
- ightharpoonup L(G) is a factor iff G is icc.

On the other hand, much information is lost:

- ▶ For any infinite abelian group G, one has $L(G) \cong L^{\infty}([0,1], \lambda)$.
- ▶ Connes '76: all icc amenable groups have isomorphic von Neumann algebras. E.g. $L(S_{\infty}) \cong L(S_{\infty} \times S_{\infty})$.
- ▶ $L(G_1 * G_2) \cong L(H_1 * H_2)$ for all infinite abelian groups G_1, G_2, H_1, H_2 .
- ▶ Open question: is $L(\mathbb{F}_2) \cong L(\mathbb{F}_3)$?

W*-superrigidity for groups

In extreme cases L(G) remembers 'everything':

Definition

A group G is called **W*-superrigid** if the following holds: whenever Λ is a groups s.t $L(G) \cong L(\Lambda)$, then $G \cong \Lambda$.

W*-superrigidity for groups

In extreme cases L(G) remembers 'everything':

Definition

A group G is called **W*-superrigid** if the following holds: whenever Λ is a groups s.t $L(G) \cong L(\Lambda)$, then $G \cong \Lambda$.

Ioana, Popa, Vaes 2010: First examples of W*-superrigid groups.

Berbec, Vaes 2012: Simplified examples:

$$G := (\mathbb{Z}/2\mathbb{Z})^{(\Gamma)} \rtimes (\Gamma \times \Gamma)$$

is W*-superrigid whenever Γ is in 'class \mathcal{C} ', e.g $\Gamma = \mathbb{F}_n$ for $2 \leq n \leq \infty$.

Overview of W*-superrigidity results

- ▶ *Ioana, Popa, Vaes 2010:* First examples (generalized wreath products).
- ▶ Berbec, Vaes 2012: Simplified examples (left-right wreath products).
- ▶ Berbec 2014: More left-right wreath product examples.
- ► Chifan, Ioana 2017: First amalgamated free product examples.
- Chifan, Diaz-Arias, Drimbe 2020, 2021: More AFP, direct product, wreath product examples.
- ► Chfian, Ioana, Osin, Sun 2021: First property (T) examples.
- ▶ D., Vaes 2024: Twisted groups and virtual isomorphisms.
- ▶ D., Vaes 2024: First examples with infinite center.
- Chifan, Fernández Quero, Osin, Tan 2025: First property (T) examples with infinite center.

Compact quantum groups

Note: L(G) is an example of a **Kac type compact quantum group**.

Compact quantum groups

Note: L(G) is an example of a **Kac type compact quantum group**.

Definition

We call (A, Δ) a **compact quantum group** if A is a von Neumann algebra, $\Delta: A \to A \overline{\otimes} A$ is a faithful normal unital *-homomorphism that is co-associative (called the **comultiplication**):

$$(\Delta \otimes \operatorname{Id})\Delta = (\operatorname{Id} \otimes \Delta)\Delta ,$$

Compact quantum groups

Note: L(G) is an example of a **Kac type compact quantum group**.

Definition

We call (A, Δ) a **compact quantum group** if A is a von Neumann algebra, $\Delta: A \to A \overline{\otimes} A$ is a faithful normal unital *-homomorphism that is co-associative (called the **comultiplication**):

$$(\Delta \otimes \operatorname{Id})\Delta = (\operatorname{Id} \otimes \Delta)\Delta ,$$

and there exists a faithful normal state φ on A that is left and right invariant:

$$(\operatorname{Id} \otimes \varphi)\Delta(a) = \varphi(a)1 = (\varphi \otimes \operatorname{Id})\Delta(a)$$
 for all $a \in A$.

The state φ is called the **Haar state**. If it is tracial, (A, Δ) is of **Kac type**.

Two examples to keep in mind:

1 $L^{\infty}(K)$ for a compact group K, with

$$\Delta_K : L^{\infty}(K) \overline{\otimes} L^{\infty}(K) : (\Delta_K F)(g, h) = F(gh),$$

and Haar state given by integration w.r.t the Haar measure.

Two examples to keep in mind:

1 $L^{\infty}(K)$ for a compact group K, with

$$\Delta_K : L^{\infty}(K) \overline{\otimes} L^{\infty}(K) : (\Delta_K F)(g, h) = F(gh),$$

and Haar state given by integration w.r.t the Haar measure. Note that $L^{\infty}(K)$ is **commutative**.

Two examples to keep in mind:

1 $L^{\infty}(K)$ for a compact group K, with

$$\Delta_K : L^{\infty}(K)\overline{\otimes}L^{\infty}(K) : (\Delta_K F)(g,h) = F(gh),$$

and Haar state given by integration w.r.t the Haar measure. Note that $L^{\infty}(K)$ is **commutative**.

2 L(G) for a countable group G. Here we define

$$\Delta_G: L(G) \to L(G) \overline{\otimes} L(G): u_g \mapsto u_g \otimes u_g.$$

The Haar state is given by the canonical trace: $\tau(x) = \langle x\delta_e, \delta_e \rangle$.

Two examples to keep in mind:

1 $L^{\infty}(K)$ for a compact group K, with

$$\Delta_K : L^{\infty}(K) \overline{\otimes} L^{\infty}(K) : (\Delta_K F)(g, h) = F(gh),$$

and Haar state given by integration w.r.t the Haar measure. Note that $L^{\infty}(K)$ is **commutative**.

2 L(G) for a countable group G. Here we define

$$\Delta_G: L(G) \to L(G) \overline{\otimes} L(G): u_g \mapsto u_g \otimes u_g.$$

The Haar state is given by the canonical trace: $\tau(x) = \langle x\delta_e, \delta_e \rangle$. Note that $(L(G), \Delta_G)$ is **co-commutative**: Flip $\circ \Delta_G = \Delta_G$.

Quantum W*-superrigidity I

Question

Are any of the W*-superrigid groups still superrigid as compact quantum groups?

Quantum W*-superrigidity I

Question

Are any of the W*-superrigid groups still superrigid as compact quantum groups?

Let G be a W*-superrigid group. Does there exist a Kac type compact quantum group (A, Δ) s.t. $L(G) \cong A$ but $(L(G), \Delta_G) \ncong (A, \Delta)$?

Quantum W*-superrigidity I

Question

Are any of the W*-superrigid groups still superrigid as compact quantum groups?

Let G be a W*-superrigid group. Does there exist a Kac type compact quantum group (A, Δ) s.t. $L(G) \cong A$ but $(L(G), \Delta_G) \ncong (A, \Delta)$?

Note that for countable groups G and H: $(L(G), \Delta_G) \cong (L(H), \Delta_H)$ iff $G \cong H$.

Reason: $x \in L(G)$ satisfies $\Delta_G(x) = x \otimes x$ if and only if $x = u_g$ for some $g \in G$.

Quantum W*-superrigidity II

Definition

We say that a compact quantum group (A,Δ_A) is quantum W*-superrigid if the following holds: if (B,Δ_B) is any compact quantum group such that $B\cong A$ as von Neumann algebras, then $(A,\Delta_A)\cong (B,\Delta_B)$ as compact quantum groups.

Quantum W*-superrigidity II

Definition

We say that a compact quantum group (A, Δ_A) is quantum W*-superrigid if the following holds: if (B, Δ_B) is any compact quantum group such that $B \cong A$ as von Neumann algebras, then $(A, \Delta_A) \cong (B, \Delta_B)$ as compact quantum groups.

Note: if $(L(G), \Delta_G)$ is quantum W*-superrigid, then G is W*-superrigid as a group.

Quantum W*-superrigidity II

Definition

We say that a compact quantum group (A, Δ_A) is quantum W*-superrigid if the following holds: if (B, Δ_B) is any compact quantum group such that $B \cong A$ as von Neumann algebras, then $(A, \Delta_A) \cong (B, \Delta_B)$ as compact quantum groups.

Note: if $(L(G), \Delta_G)$ is quantum W*-superrigid, then G is W*-superrigid as a group.

Converse is **not true**: none of the W*-superrigid wreath product groups of [IPV10, BV12, Ber14, DV24] are quantum W*-superrigid!

Let (A, Δ) be a Kac type compact quantum group. A **unitary 2-cocycle** is a unitary $\Omega \in A \overline{\otimes} A$ satisfying

$$(\Omega \otimes 1)(\Delta \otimes \operatorname{Id})(\Omega) = (1 \otimes \Omega)(\operatorname{Id} \otimes \Delta)(\Omega).$$

Let (A,Δ) be a Kac type compact quantum group. A **unitary 2-cocycle** is a unitary $\Omega\in A\overline{\otimes}A$ satisfying

$$(\Omega \otimes 1)(\Delta \otimes \operatorname{Id})(\Omega) = (1 \otimes \Omega)(\operatorname{Id} \otimes \Delta)(\Omega).$$

If Ω is a 2-cocycle, then

$$\Delta_{\Omega}: A \to A \overline{\otimes} A: \Delta_{\Omega}(a) = \Omega \Delta(a) \Omega^*$$

is again co-associative and (A, Δ_{Ω}) is again a Kac type compact quantum group.

Let (A,Δ) be a Kac type compact quantum group. A **unitary 2-cocycle** is a unitary $\Omega\in A\overline{\otimes}A$ satisfying

$$(\Omega \otimes 1)(\Delta \otimes \operatorname{Id})(\Omega) = (1 \otimes \Omega)(\operatorname{Id} \otimes \Delta)(\Omega).$$

If Ω is a 2-cocycle, then

$$\Delta_{\Omega}: A \to A \overline{\otimes} A: \Delta_{\Omega}(a) = \Omega \Delta(a) \Omega^*$$

is again co-associative and (A, Δ_{Ω}) is again a Kac type compact quantum group. (Result by De Commer '10, we give an elementary proof).

Let (A,Δ) be a Kac type compact quantum group. A **unitary 2-cocycle** is a unitary $\Omega\in A\overline{\otimes}A$ satisfying

$$(\Omega \otimes 1)(\Delta \otimes \operatorname{Id})(\Omega) = (1 \otimes \Omega)(\operatorname{Id} \otimes \Delta)(\Omega).$$

If Ω is a 2-cocycle, then

$$\Delta_{\Omega}: A \to A \overline{\otimes} A: \Delta_{\Omega}(a) = \Omega \Delta(a) \Omega^*$$

is again co-associative and (A, Δ_{Ω}) is again a Kac type compact quantum group. (Result by De Commer '10, we give an elementary proof).

 \rightarrow Potentially **two different quantum group structures** on the same von Neumann algebra A.

No-go result

Proposition (D., Vaes '25)

Let G be an icc group, $G_0 < G$ a subgroup and $\Omega_0 \in L(G_0) \overline{\otimes} L(G_0)$ a nontrivial unitary 2-cocycle for $(L(G_0), \Delta_0)$. View Ω_0 as a unitary 2-cocycle Ω for $(L(G), \Delta)$. Then, Δ_Ω is not symmetric.

In particular, Ω_0 remains nontrivial as a 2-cocycle on $(L(G), \Delta)$, we have that $(L(G), \Delta_{\Omega}) \not\cong (L(G), \Delta)$ and $(L(G), \Delta_G)$ is not quantum W^* -superrigid.

No-go result

Proposition (D., Vaes '25)

Let G be an icc group, $G_0 < G$ a subgroup and $\Omega_0 \in L(G_0) \overline{\otimes} L(G_0)$ a nontrivial unitary 2-cocycle for $(L(G_0), \Delta_0)$. View Ω_0 as a unitary 2-cocycle Ω for $(L(G), \Delta)$. Then, Δ_Ω is not symmetric.

In particular, Ω_0 remains nontrivial as a 2-cocycle on $(L(G), \Delta)$, we have that $(L(G), \Delta_{\Omega}) \not\cong (L(G), \Delta)$ and $(L(G), \Delta_G)$ is not quantum W^* -superrigid.

Corollary (D., Vaes '25)

Let G be an icc group with a finite abelian subgroup $G_0 < G$ such that $H^2(\widehat{G}_0, \mathbb{T}) \neq 0$. Then G is not quantum W^* -superrigid.

Wreath product groups fail

In particular, none of the W*-superrigid wreath product groups

$$G := (\mathbb{Z}/2\mathbb{Z})^{(\Gamma)} \rtimes (\Gamma \times \Gamma)$$

are quantum W*-superrigid.

Wreath product groups fail

In particular, none of the W*-superrigid wreath product groups

$$G := (\mathbb{Z}/2\mathbb{Z})^{(\Gamma)} \rtimes (\Gamma \times \Gamma)$$

are quantum W*-superrigid.

<u>Remark:</u> Not an issue for plain W^* -superrigidity because of a vanishing result for **symmetric** 2-cocycles (IPV10).

ightarrow We need a general vanishing of cohomology result.

Main construction:

▶ Let (A_0, τ_0) be a Kac type compact quantum group with Haar state τ_0 .

Main construction:

- ▶ Let (A_0, τ_0) be a Kac type compact quantum group with Haar state τ_0 .
- ▶ Let Γ be a countable group and let β : $\Gamma \curvearrowright (A_0, \Delta_0)$ be an action by quantum group automorphisms.

Main construction:

- ▶ Let (A_0, τ_0) be a Kac type compact quantum group with Haar state τ_0 .
- ▶ Let Γ be a countable group and let β : $\Gamma \curvearrowright (A_0, \Delta_0)$ be an action by quantum group automorphisms.
- ▶ Consider the co-induced left-right Bernoulli action $\alpha: \Gamma \times \Gamma \curvearrowright (A,\tau) = (A_0,\tau_0)^\Gamma$ defined as follows: denote by $\pi_k: A_0 \to A$ the embedding in the k'th tensor factor. Then

$$\alpha_{(q,h)}(\pi_k(a)) = \pi_{qkh^{-1}}(\beta_q(a)).$$

Main construction:

- ▶ Let (A_0, τ_0) be a Kac type compact quantum group with Haar state τ_0 .
- ▶ Let Γ be a countable group and let β : $\Gamma \curvearrowright (A_0, \Delta_0)$ be an action by quantum group automorphisms.
- ▶ Consider the co-induced left-right Bernoulli action $\alpha: \Gamma \times \Gamma \curvearrowright (A,\tau) = (A_0,\tau_0)^\Gamma$ defined as follows: denote by $\pi_k: A_0 \to A$ the embedding in the k'th tensor factor. Then

$$\alpha_{(g,h)}(\pi_k(a)) = \pi_{gkh^{-1}}(\beta_g(a)).$$

▶ Define $M = (A, \tau) \rtimes_{\alpha} (\Gamma \times \Gamma)$.

Let $M=(A,\tau)\rtimes_{\alpha}(\Gamma\times\Gamma)$ be a co-induced left-right Bernoulli crossed product. Standard assumptions:

 $ightharpoonup A_0$ is amenable.

Let $M=(A,\tau)\rtimes_{\alpha}(\Gamma\times\Gamma)$ be a co-induced left-right Bernoulli crossed product. Standard assumptions:

- $ightharpoonup A_0$ is amenable.
- ightharpoonup ker β is infinite.

Let $M=(A,\tau)\rtimes_{\alpha}(\Gamma\times\Gamma)$ be a co-induced left-right Bernoulli crossed product. Standard assumptions:

- $ightharpoonup A_0$ is amenable.
- ightharpoonup ker β is infinite.
- ▶ Γ is in 'class C': Γ is nonamenable, weakly amenable, bi-exact, and $C_{\Gamma}(g)$ is amenable for every $g \in \Gamma \setminus \{e\}$.

Think: $\Gamma = \mathbb{F}_n$ for $2 \le n \le \infty$.

Let $M=(A,\tau)\rtimes_{\alpha}(\Gamma\times\Gamma)$ be a co-induced left-right Bernoulli crossed product. Standard assumptions:

- $ightharpoonup A_0$ is amenable.
- ightharpoonup ker β is infinite.
- ▶ Γ is in 'class C': Γ is nonamenable, weakly amenable, bi-exact, and $C_{\Gamma}(g)$ is amenable for every $g \in \Gamma \setminus \{e\}$.

Think: $\Gamma = \mathbb{F}_n$ for $2 \le n \le \infty$.

Note: using Δ_0 and $\Delta_{\Gamma \times \Gamma}$, we can build Δ so that (M, Δ) is again naturally a Kac type compact quantum group.

Goal: find $\beta : \Gamma \curvearrowright (A_0, \Delta_0)$ so that (M, Δ) is quantum W*-superrigid.

Main result

Theorem (D., Vaes '25)

For each of the following action $\beta : \Gamma \curvearrowright (A_0, \Delta_0)$, the co-induced left-right Bernoulli crossed product (M, Δ) is quantum W^* -superrigid.

Main result

Theorem (D., Vaes '25)

For each of the following action $\beta:\Gamma\curvearrowright (A_0,\Delta_0)$, the co-induced left-right Bernoulli crossed product (M,Δ) is quantum W^* -superrigid.

1 Let Λ be a torsion free amenable icc group. Set $(A_0, \Delta_0) = (L(\Lambda), \Delta_{\Lambda})$. Let $\Gamma = \Lambda * \mathbb{Z}$ act by $\beta_g = \operatorname{Ad} u_g$ for $g \in \Lambda$ and $\beta_a = \operatorname{Id}$ for $a \in \mathbb{Z}$.

Main result

Theorem (D., Vaes '25)

For each of the following action $\beta:\Gamma\curvearrowright (A_0,\Delta_0)$, the co-induced left-right Bernoulli crossed product (M,Δ) is quantum W^* -superrigid.

- 1 Let Λ be a torsion free amenable icc group. Set $(A_0, \Delta_0) = (L(\Lambda), \Delta_{\Lambda})$. Let $\Gamma = \Lambda * \mathbb{Z}$ act by $\beta_g = \operatorname{Ad} u_g$ for $g \in \Lambda$ and $\beta_a = \operatorname{Id}$ for $a \in \mathbb{Z}$.
- 2 Let $(A_0, \Delta_0) = (L^{\infty}(K), \Delta_K)$ where $K = \mathbb{T}^n$ for $n \geq 3$ or for many finite groups K. Define $\Gamma = \mathbb{F}_{\operatorname{Aut} K}$ and set $\beta_{\alpha}(a) = \alpha(a)$ for every $\alpha \in \operatorname{Aut} K$.

E.g. $K = \mathrm{SL}_2(\mathbb{F}_p)$ for p a prime and $p \geq 5$ or $K = \mathrm{SL}_n(\mathbb{F}_q)$ for q a prime power (three exceptions).

Ingredients of the proof

Three main ingredients:

- 1 Vanishing of cohomology.
 - \rightarrow Why we need Λ torison free, or the finite K to be perfect with trivial Schur multiplier.

Ingredients of the proof

Three main ingredients:

- 1 Vanishing of cohomology.
 - \rightarrow Why we need Λ torison free, or the finite K to be perfect with trivial Schur multiplier.
- 2 Relative rigidity for compact quantum groups.
 - Note: construction of M is functorial in $\Gamma \curvearrowright^{\bar{\beta}} (A_0, \Delta_0)$.
 - ightarrow We should recover the quantum group structure from the von Neumann algebra A_0 and the quantum group automorphisms β_g .

Ingredients of the proof

Three main ingredients:

- 1 Vanishing of cohomology.
 - \rightarrow Why we need Λ torison free, or the finite K to be perfect with trivial Schur multiplier.
- 2 Relative rigidity for compact quantum groups.
 - Note: construction of M is functorial in $\Gamma \curvearrowright^{\bar{\beta}} (A_0, \Delta_0)$.
 - ightarrow We should recover the quantum group structure from the von Neumann algebra A_0 and the quantum group automorphisms β_g .
- 3 Classification of coarse embeddings (D. Vaes '24).
 - \rightarrow Generalise comultiplication approach to quantum group setting.

Cohomology of crossed products 1

De Commer '10: Every unitary 2-cocycle of $(L(G), \Delta_G)$ is a coboundary if G is torsion free.

We extend this to the setting of a countable group acting on a Kac type compact quantum group $\Gamma \curvearrowright (A, \Delta_A)$ by quantum group automorphisms. Then the crossed product $M:=A \rtimes \Gamma$ naturally becomes a Kac type compact quantum group by

$$\Delta_M(au_g) := \Delta_A(a)(u_g \otimes u_g)$$

and

$$\varphi_M(au_g) = 0, \quad \forall g \in \Gamma \setminus \{e\}.$$

Cohomology of crossed products 2

Proposition

Let $M = A \rtimes_{\alpha} \Gamma$ as before.

- 1 For every unitary 2-cocycle Ω on M, there is finite subgroup $\Lambda < \Gamma$ s.t. $\Omega \sim \Omega_0$ for a 2-cocycle $\Omega_0 \in (A \rtimes \Lambda) \overline{\otimes} (A \rtimes \Lambda)$.
- 2 If Ω_1, Ω_2 are unitary 2-cocycles for (A, Δ_A) , then $\Omega_1 \sim \Omega_2$ as 2-cocycles for (M, Δ_M) iff there is a $g \in \Gamma$ s.t. $\Omega_1 \sim (\alpha_g \otimes \alpha_g)(\Omega_2)$ as 2-cocycles for (A, Δ_A) .
- 3 Nontrivial 2-cocycles for (A, Δ_A) and $(L(\Gamma), \Delta)$ remain nontrivial as 2-cocycles for (M, Δ_M) .

Cohomology of tensor products

Let (A_k, Δ_k) be Kac type compact groups with haar states φ_k and set

$$(A,\varphi) := \overline{\bigotimes}_k (A_k,\varphi_k)$$
.

Then A is again a Kac type compact quantum group with Δ defined by $\Delta \circ \pi_k = (\pi_k \otimes \pi_k) \circ \Delta_k$ for all k.

Proposition

Every unitary 2-cocycle for (A, Δ) is a coboundary iff the following hold:

- 1 For every k, every unitary 2-cocycle on (A_k, Δ_k) is a coboundary.
- 2 if k, l are distinct, then any bicharacter $Z \in \mathcal{U}(A_k \overline{\otimes} A_l)$ is trivial.

Vanishing of cohomology

Now let $M=(A_0,\tau_0)^\Gamma\rtimes_\alpha(\Gamma\times\Gamma)$ be our co-induced Bernoulli crossed products. Conclusion: M has no nontrivial unitary 2-cocycles when

- ightharpoonup Γ is torsion free
- $ightharpoonup (A_0, \Delta_0)$ has no nontrivial 2-cocycles or bicharacters.

Examples are

- \blacktriangleright $(L(\Lambda), \Delta_{\Lambda})$ with Λ torsion free.
- \blacktriangleright $(L^{\infty}(K), \Delta_K)$ with $K = \mathbb{T}^n$, or connected compact abelian second countable.
- \blacktriangleright $(L^{\infty}(K), \Delta_K)$ with K finite, perfect, with trivial Shur multiplier, e.g. $K = \mathrm{SL}_n(\mathbb{F}_q)$ for many n and prime powers q.

Construction of M is functorial in $\Gamma \curvearrowright^{\beta} (A_0, \Delta_0)$:

Construction of M is functorial in $\Gamma \curvearrowright^{\beta} (A_0, \Delta_0)$: If $\Gamma \curvearrowright^{\theta} (A_1, \Delta_1)$ such that

$$\Gamma \curvearrowright^{\beta} A_0 \sim \Gamma \curvearrowright^{\theta} A_1$$

as actions on von Neumann algebras, then the resulting co-induced left-right Bernoulli crossed products are isomorphic.

Construction of M is functorial in $\Gamma \curvearrowright^{\beta} (A_0, \Delta_0)$: If $\Gamma \curvearrowright^{\theta} (A_1, \Delta_1)$ such that

$$\Gamma \curvearrowright^{\beta} A_0 \sim \Gamma \curvearrowright^{\theta} A_1$$

as actions on von Neumann algebras, then the resulting co-induced left-right Bernoulli crossed products are isomorphic.

 \rightarrow We need additional rigidity.

We should recover Δ_0 from A_0 and the fact that all β_g are quantum group automorphisms.

Construction of M is functorial in $\Gamma \curvearrowright^{\beta} (A_0, \Delta_0)$: If $\Gamma \curvearrowright^{\theta} (A_1, \Delta_1)$ such that

$$\Gamma \curvearrowright^{\beta} A_0 \sim \Gamma \curvearrowright^{\theta} A_1$$

as actions on von Neumann algebras, then the resulting co-induced left-right Bernoulli crossed products are isomorphic.

ightarrow We need additional rigidity.

We should recover Δ_0 from A_0 and the fact that all β_g are quantum group automorphisms.

 \rightarrow **Rigidity** of A_0 relative to a group of automorphisms $\Gamma < \operatorname{Aut}(A_0, \Delta_0)$.

Definition

We say (A, Δ_A) is rigid relative to $\Gamma \curvearrowright^{\alpha} (A, \Delta_A)$ if the following holds: if $\Gamma \curvearrowright^{\beta} (B, \Delta_B)$ is another action by quantum group automorphisms and $\pi : A \to B$ is a state preserving von Neumann algebra isomorphism s.t. $\beta_G \circ \pi = \pi \circ \alpha_g$ for all $g \in \Gamma$,

Definition

We say (A, Δ_A) is rigid relative to $\Gamma \curvearrowright^{\alpha} (A, \Delta_A)$ if the following holds: if $\Gamma \curvearrowright^{\beta} (B, \Delta_B)$ is another action by quantum group automorphisms and $\pi: A \to B$ is a state preserving von Neumann algebra isomorphism s.t. $\beta_G \circ \pi = \pi \circ \alpha_g$ for all $g \in \Gamma$, then there exists a quantum group isomorphisms $\pi_0: (A, \Delta_A) \to (B, \Delta_B)$ and a group automorphism ζ of Γ s.t. $\beta_{\zeta(g)} \circ \pi_0 = \pi_0 \circ \alpha_g$ for all $g \in \Gamma$.

Definition

We say (A, Δ_A) is rigid relative to $\Gamma \curvearrowright^{\alpha} (A, \Delta_A)$ if the following holds: if $\Gamma \curvearrowright^{\beta} (B, \Delta_B)$ is another action by quantum group automorphisms and $\pi: A \to B$ is a state preserving von Neumann algebra isomorphism s.t. $\beta_G \circ \pi = \pi \circ \alpha_g$ for all $g \in \Gamma$, then there exists a quantum group isomorphisms $\pi_0: (A, \Delta_A) \to (B, \Delta_B)$ and a group automorphism ζ of Γ s.t. $\beta_{\zeta(g)} \circ \pi_0 = \pi_0 \circ \alpha_g$ for all $g \in \Gamma$.

A finite group K is rigid relative to $\operatorname{Aut} K$ if the following holds: whenever Λ is a group and $\pi:K\to\Lambda$ is a bijection s.t. $\pi\circ\alpha\circ\pi^{-1}\in\operatorname{Aut}\Lambda$ for all $\alpha\in\operatorname{Aut} K$, then $K\cong\Lambda$.

Some examples of relative rigidity are:

1 K^n relative to $\mathrm{SL}_n(\mathbb{Z})$, for any second countable connected compact abelian K and $n \geq 3$.

Some examples of relative rigidity are:

- 1 K^n relative to $\mathrm{SL}_n(\mathbb{Z})$, for any second countable connected compact abelian K and $n \geq 3$.
- $_{2}$ $L(\Lambda)$ relative to (any group containing) the inner automorphisms, for Λ an icc group.

Some examples of relative rigidity are:

- 1 K^n relative to $\mathrm{SL}_n(\mathbb{Z})$, for any second countable connected compact abelian K and $n \geq 3$.
- 2 $L(\Lambda)$ relative to (any group containing) the inner automorphisms, for Λ an icc group.
- 3 Most (all?) finite simple groups relative to their automorphism group. E.g. $\mathrm{SL}_n(\mathbb{F}_q)$ for all prime power q and all $n \geq 3$, and A_n for any $n \geq 2$.

Some examples of relative rigidity are:

- 1 K^n relative to $\mathrm{SL}_n(\mathbb{Z})$, for any second countable connected compact abelian K and $n \geq 3$.
- 2 $L(\Lambda)$ relative to (any group containing) the inner automorphisms, for Λ an icc group.
- 3 Most (all?) finite simple groups relative to their automorphism group. E.g. $\mathrm{SL}_n(\mathbb{F}_q)$ for all prime power q and all $n \geq 3$, and A_n for any $n \geq 2$.

Non-example: a **non-abelian** compact second countable group K is **never** rigid relative to any $\Gamma < \operatorname{Aut}(K)$.

Let $M=(A_0,\tau_0)^\Gamma\rtimes_\alpha(\Gamma\times\Gamma)$ be our co-induced left-right Bernoulli crossed product and let (Q,Δ_Q) be another compact quantum group. Suppose $\pi:M\to Q$ is a normal *-isomorphism.

Goal: Show that $(M, \Delta) \cong (Q, \Delta_Q)$.

Let $M=(A_0,\tau_0)^\Gamma\rtimes_\alpha(\Gamma\times\Gamma)$ be our co-induced left-right Bernoulli crossed product and let (Q,Δ_Q) be another compact quantum group. Suppose $\pi:M\to Q$ is a normal *-isomorphism.

Goal: Show that $(M, \Delta) \cong (Q, \Delta_Q)$.

Consider $\Delta_1 := (\pi^{-1} \otimes \pi^{-1}) \circ \Delta_Q \circ \pi : M \to M \overline{\otimes} M$. Tautologically, (M, Δ_1) and (Q, Δ_Q) are isomorphic as quantum groups.

Let $M=(A_0,\tau_0)^\Gamma\rtimes_\alpha(\Gamma\times\Gamma)$ be our co-induced left-right Bernoulli crossed product and let (Q,Δ_Q) be another compact quantum group. Suppose $\pi:M\to Q$ is a normal *-isomorphism.

Goal: Show that $(M, \Delta) \cong (Q, \Delta_Q)$.

Consider $\Delta_1 := (\pi^{-1} \otimes \pi^{-1}) \circ \Delta_Q \circ \pi : M \to M \overline{\otimes} M$. Tautologically, (M, Δ_1) and (Q, Δ_Q) are isomorphic as quantum groups.

Step 1: Analyse Δ_1

- → Classification of coarse embeddings
- → Using Popa's deformation/rigidity framework

Result: we find

- ightharpoonup unitary $\Omega \in M \overline{\otimes} M$,
- ightharpoonup a character $\chi:\Gamma\times\Gamma\to\mathbb{C}$,
- ▶ group automorphisms $\delta_1, \delta_2 : \Gamma \times \Gamma \to \Gamma \times \Gamma$,

Result: we find

- ightharpoonup unitary $\Omega \in M \overline{\otimes} M$,
- ightharpoonup a character $\chi:\Gamma\times\Gamma\to\mathbb{C}$,
- lacktriangle group automorphisms $\delta_1, \delta_2 : \Gamma \times \Gamma \to \Gamma \times \Gamma$,

such that

- $ightharpoonup \Omega \Delta_1(\pi_e(A_0))\Omega^* \subset \pi_e(A_0)\overline{\otimes}\pi_e(A_0)$,

Result: we find

- ightharpoonup unitary $\Omega \in M \overline{\otimes} M$,
- ightharpoonup a character $\chi:\Gamma\times\Gamma\to\mathbb{C}$,
- ightharpoonup group automorphisms $\delta_1, \delta_2 : \Gamma \times \Gamma \to \Gamma \times \Gamma$,

such that

- $ightharpoonup \Omega \Delta_1(\pi_e(A_0))\Omega^* \subset \pi_e(A_0)\overline{\otimes}\pi_e(A_0)$,

Moreover, Ω is a unitary 2-cocycle for (M, Δ_1) .

Result: we find

- ightharpoonup unitary $\Omega \in M \overline{\otimes} M$,
- ightharpoonup a character $\chi:\Gamma\times\Gamma\to\mathbb{C}$,
- lacktriangle group automorphisms $\delta_1, \delta_2 : \Gamma \times \Gamma \to \Gamma \times \Gamma$,

such that

- $ightharpoonup \Omega \Delta_1(\pi_e(A_0))\Omega^* \subset \pi_e(A_0)\overline{\otimes}\pi_e(A_0)$,

Moreover, Ω is a unitary 2-cocycle for (M, Δ_1) .

We get a new compact quantum group (M,Φ) with $\Phi=\Omega\Delta_1\Omega^*$.

Step 2: Analyse (M, Φ) .

 $\underline{\mathsf{Step 2:}} \ \mathsf{Analyse} \ (M, \Phi).$

Since now $\Phi(\pi_e(A_0)) \subset \pi_e(A_0) \overline{\otimes} \pi_e(A_0)$ and $\Phi(u_{(g,g)})$ has a special form, we get that the β_q are quantum group automorphisms of (A_0, Φ_0) .

Step 2: Analyse (M, Φ) .

Since now $\Phi(\pi_e(A_0)) \subset \pi_e(A_0) \overline{\otimes} \pi_e(A_0)$ and $\Phi(u_{(g,g)})$ has a special form, we get that the β_q are quantum group automorphisms of (A_0, Φ_0) .

 \to We can use relative rigidity to find a quantum group isomorphism $\pi_0:(A_0,\Delta_0)\to(A_0,\Phi_0)$,

Step 2: Analyse (M, Φ) .

Since now $\Phi(\pi_e(A_0)) \subset \pi_e(A_0) \overline{\otimes} \pi_e(A_0)$ and $\Phi(u_{(g,g)})$ has a special form, we get that the β_g are quantum group automorphisms of (A_0, Φ_0) .

o We can use relative rigidity to find a quantum group isomorphism $\pi_0:(A_0,\Delta_0) o(A_0,\Phi_0)$, which extends to a quantum group isomorphism $\pi_1:(M,\Delta) o(M,\Phi)$.

Step 3: Vanishing of cohomology.

Step 2: Analyse (M, Φ) .

Since now $\Phi(\pi_e(A_0)) \subset \pi_e(A_0) \overline{\otimes} \pi_e(A_0)$ and $\Phi(u_{(g,g)})$ has a special form, we get that the β_g are quantum group automorphisms of (A_0, Φ_0) .

o We can use relative rigidity to find a quantum group isomorphism $\pi_0: (A_0, \Delta_0) o (A_0, \Phi_0)$, which extends to a quantum group isomorphism $\pi_1: (M, \Delta) o (M, \Phi)$.

Step 3: Vanishing of cohomology.

We now use our vanishing of cohomology results to conclude that Ω is a coboundary.

Step 2: Analyse (M, Φ) .

Since now $\Phi(\pi_e(A_0)) \subset \pi_e(A_0) \overline{\otimes} \pi_e(A_0)$ and $\Phi(u_{(g,g)})$ has a special form, we get that the β_g are quantum group automorphisms of (A_0, Φ_0) .

o We can use relative rigidity to find a quantum group isomorphism $\pi_0: (A_0, \Delta_0) o (A_0, \Phi_0)$, which extends to a quantum group isomorphism $\pi_1: (M, \Delta) o (M, \Phi)$.

Step 3: Vanishing of cohomology.

We now use our vanishing of cohomology results to conclude that Ω is a coboundary. Hence (M,Φ) and (M,Δ_1) are isomorphic.

Step 2: Analyse (M, Φ) .

Since now $\Phi(\pi_e(A_0)) \subset \pi_e(A_0) \overline{\otimes} \pi_e(A_0)$ and $\Phi(u_{(g,g)})$ has a special form, we get that the β_g are quantum group automorphisms of (A_0, Φ_0) .

o We can use relative rigidity to find a quantum group isomorphism $\pi_0: (A_0,\Delta_0) o (A_0,\Phi_0)$, which extends to a quantum group isomorphism $\pi_1: (M,\Delta) o (M,\Phi)$.

Step 3: Vanishing of cohomology.

We now use our vanishing of cohomology results to conclude that Ω is a coboundary. Hence (M,Φ) and (M,Δ_1) are isomorphic. We conclude

$$(M, \Delta) \cong (M, \Phi) \cong (M, \Delta_1) \cong (Q, \Delta_Q)$$
.

